【资料图】
子集
如果集合A的任意一个元素都是集合B的元素(任意a∈A则a∈B),那么集合A称为集合B的子集,记为A⊆B或B⊇A,读作“集合A包含于集合B”或集合B包含集合A”。
即:∀a∈A有a∈B,则A⊆B。
真子集
如果集合A是B的子集,且A≠B,即B中至少有一个元素不属于A,那么A就是B的真子集,可记作:A⊊B。
符号语言:若∀a∈A,均有a∈B,且x∈B使x∉A,则A⊊B。
注:非空真子集与真子集的区别,前者不包括空集,后者可以有。
举例说明,比如全集I为{1,2,3},
它的子集为{1}、{2}、{3}、{1,2}、{1,3}、{2,3}、{1,2,3}、再加个空集;
而真子集为{1}、{2}、{3}、{1,2}、{1,3}、{2,3}、再加个空集,不包括全集I本身。